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Abstract— In this paper, we investigate the problem of syn-
thesizing optimal control policies for stochastic control systems
to achieve high-level temporal logic specifications under security
constraints. Specifically, we consider a stochastic control system
modeled by a finite labeled Markov Decision Process (MDP). We
consider a passive intruder (an eavesdropper) that can observe
the external output behavior of the system. We assume the
system has a secret, modeled as visiting of some secret states,
that does not want to be revealed to the intruder. The security
constraint is that the intruder can never determine for sure that
the system is/was at a secret state for any specific instant of time.
The overall objective is to maximize the probability of achieving
the temporal logic task while ensuring the information-flow
security of the system. An effective algorithm is proposed
to solve this problem. Specifically, we show that the security
constraints can be handled as a safety requirement over the
information-state-space and the optimal control problem can
be then solved by leveraging existing results from probabilistic
model checking. The proposed approach is also illustrated by
a case study for robot task planning.

I. INTRODUCTION

In recent years, there has been an increasing interest in
using formal methods for the verification and design of
complex engineering systems such as robots, autonomous
vehicles and energy systems. Temporal logics such as linear
temporal logic (LTL) and computation tree logic (CTL)
provide rich and user-friendly languages for designer to de-
scribe the desired high-level specifications. Verification and
synthesis of control strategies for LTL tasks have attracted
considerable attentions in the control community in the past
few years.

In many real-world applications, due to uncertainties of
the dynamic or incomplete model information, it is more
practical to model the system using stochastic formal models
such as Markov Decision Processes (MDPs). In the context
of formal synthesis of stochastic systems, algorithms have
been proposed to synthesize optimal control strategies for
MDPs under general LTL specifications [4], co-safe LTL
specifications [9] and CTL specifications [10]. In [7], the
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total cost of the prefix and suffix structure is minimized using
linear programs. Compositional reasoning has also been used
in [13] for MDPs under co-safe LTL specifications. Recently,
reinforcement learning techniques have also been applied to
synthesize control policies that maximize the probability of
satisfying LTL formulas; see, e.g., [3], [8], [11], [18].

The above mentioned works on formal synthesis of MDPs
focus on the correctness of the system such as safety or
liveness. Yet, security and privacy constraints, which are
very important in cyber-physical systems, have not been fully
considered. Such issues arise naturally when agents exchange
information among the group or transmit information to
a third party. An outside malicious intruder may access
the information-flow of the system and infer the secret of
the system. Due to the importance of security and privacy
concerns, recent works have started to consider security
as additional constraints in temporal logic synthesis; see,
e.g., [12], [14], [17], [20], [21]. For example, the notion
of differential privacy was used in [14], [20] to capture the
privacy requirements in LTL synthesis for stochastic systems.

In this work, we study a security-aware optimal LTL
synthesis problem for stochastic systems modeled as finite
MDPs. Different from the existing works on security-aware
formal synthesis, we consider an information-flow security
property called the infinite-step opacity [15], [23]. This
security property requires that an outside eavesdropper can
never infer for sure that the system is/was at a secret state at
any specific instant of time based on its external observation.
It is known that the expressiveness of opacity and differ-
ential privacy are different as discussed in detail in [24].
Essentially, opacity characterizes the plausible deniability
of the system for its secret behavior. In this paper, we
propose an effective approach that maximizes the probability
of satisfying the LTL formula such that the information-
flow of the system is infinite-step opaque. Our approach is
based on the construction of a novel information structure
that captures all delayed information of the system. Then
by suitably augmenting the information space as well as the
Rabin automaton capturing the LTL requirement, we show
that the optimal security-aware control synthesis problem
can be solved effectively by probabilistic model checking
approaches.

In the context of security-aware formal design, our work
is mostly related to [17], [21], where optimal paths satisfying
both opacity and the LTL specification are generated. How-
ever, these works consider path planning for non-stochastic
systems, while our work aims to synthesize control policies
for stochastic systems. In the context of opacity-enforcing



supervisory control of discrete-event systems [5], [16], [19],
[22], most of the existing works consider the case of non-
stochastic systems modeled by finite-state automata except
[2]. The security requirement in [2] falls into the category
of current-state opacity, which is weaker than our notion of
infinite-step opacity.

The remaining part of the paper is organized as fol-
lows. Section II presents some necessary preliminaries. In
Section III, we formulate the security-aware LTL synthesis
problem for MDPs. In Section IV, we present the structure
of information-state estimator that effectively handles the
security constraint. In Section V, we propose a synthesis
algorithm that returns the optimal control policy based on
the product MDP. In Section VI, we illustrate our approach
by a robot task planning example. Finally, we conclude the
paper in Section VII.

II. PRELIMINARY

A. System Model

Let S be a finite set, we use S∗ and Sω to denote the
set of all finite and infinite sequences of elements over
S, respectively. We denote by 2S the power set of S.
Let τ = s0s1 . . . sn ∈ S∗ be a finite string, we denote
the last element of τ by Last(τ). For finite strings τ =
s0 . . . sn, τ

′ = s′0 . . . s
′
m ∈ S∗, their concatenation is ττ ′ =

s0 . . . sns
′
0 . . . s

′
m ∈ S∗. We write τ1 ≤ τ2 if there exists

τ ′ ∈S∗ such that τ1τ ′= τ2 and we write τ1 <τ2 if τ1≤ τ2
and τ1 6=τ2.

We model a stochastic system as a finite labeled MDP

M = (S, s0, A, P,AP, L),

where S is a finite set of states, s0 ∈ S is the initial state,
A is a finite set of actions, P : S×A×S → [0, 1] describes
the transition probability under each action, i.e., P (s, a, s′)
is the probability of the transition from state s to state s′

when action a is taken. For each state s ∈ S, we denote
by A(s) = {a ∈ A : ∃s′ ∈ S, P (s, a, s′) > 0} as the set
of available actions at state s. Also, AP is a set of atomic
propositions describing some basic properties of interest and
L : S → 2AP is a labeling function that assigns to each state
a set of atomic propositions that hold in that state.

Given a labeled MDP M, a finite path in M is a finite
sequence of states τ = s0s1 . . . sn such that for any i ≥ 0,
there exists an action a ∈ A(si) such that P (si, a, si+1) > 0.
An infinite path in M is defined analogously. We denote by
Path(M) and Pathω(M) the set of finite and infinite paths
inM, respectively. The trace of an infinite path τ = s0s1 · · ·
is denoted by trace(τ), which is an infinite sequence of
atomic propositions, i.e. trace(τ) = L(s0)L(s1) · · · ∈
(2AP)ω .

Given a labeled MDP M, a control policy is a mapping
that determines the next action applied based on the finite
path executed

Γ : S∗ → A.

We denote byMΓ the labeled MDP under control. Then we
say a finite path τ = s0s1 . . . sn is in the controlled system

MΓ if for any i ≥ 0, we have P (si,Γ(s0s1 . . . si), si+1) >
0. An infinite path inMΓ is defined analogously. We denote
by Path(MΓ) and Pathω(MΓ) the set of finite and infinite
paths inMΓ, respectively. Note that when Γ is a state-based
policy, i.e., Γ : S → A, thenMΓ is actually a Markov chain.

B. Linear Temporal Logic

An LTL formula consists of a finite set of atomic propo-
sitions AP and both logic and temporal operators according
to the following syntax [1]:

ϕ := True | a | ¬ϕ | ϕ1 ∧ ϕ2 | © ϕ | ϕ1 U ϕ2,

where a ∈ AP , ¬ and ∧ are logical negation and conjunc-
tion, respectively, © and U denote the “next” and “until”
operators, respectively. True stands for the set 2AP . Other
temporal operators can be derived, e.g., “eventually” is ♦ϕ =
True U ϕ and “always” is �ϕ = ¬♦¬ϕ. LTL formulas
are evaluated over infinite words. Given an infinite word
σ ∈ (2AP)ω , we write σ |= ϕ if σ satisfies the LTL formula
ϕ. The reader is referred to [1] for details on LTL semantics.
We denote Lϕ = {σ ∈ (2AP)ω : σ |= ϕ} as the maximal
set of words satisfying ϕ.

A deterministic Rabin automaton (DRA) is a tuple R =
(Q,Σ, δ, q0, Acc), where Q is a finite set of states, Σ is
a finite set of alphabets, δ : Q × Σ → Q is the tran-
sition function, q0 ∈ Q is the initial state, and Acc =
{(B1, G1), (B2, G2), . . . , (Bn, Gn)} is a finite set of Rabin
pairs such that Bi, Gi ⊆ Q for all i = 1, 2, . . . , n. Given an
infinite word σ = σ1σ2 · · · ∈ Σω , the infinite run of DRA R
over σ is the sequence of infinite states ρ = q0q1 · · · ∈ Qω
such that qi = δ(qi−1, σi) for any i ≥ 1. An infinite run
ρ ∈ Qω is said to be accepted if and only if there exists a
rabin pair (Bi, Gi) ∈ Acc such that inf(ρ) ∩ Bi = ∅ and
inf(ρ) ∩ Gi 6= ∅, where inf(ρ) is the set of states that
occurs infinitely many times in ρ. Then an infinite word σ
is said to be accepted if it induces an accepting infinite run.
We denote by Lω(R) ⊆ Σω the accepted language of DRA
R, which is the set of accepting words.

Given an LTL formula ϕ over AP , it is known that there
exists a DRA over 2AP that (only) accepts all infinite words
satisfying ϕ, i.e., Lω(R) = Lϕ. Translation algorithms from
LTL to DRA can be founded in [6].

III. PROBLEM FORMULATION

In this section, we formulate the security constraints as
well as the security-aware optimal control synthesis problem
that we solve in this paper.

Given a labeled MDP M, we assume that there is a
malicious intruder (eavesdropper) that can observe the ex-
ternal behavior of the system. However, the internal states
of the system are not available directly to the intruder and
the intruder needs to infer the internal state based on its
observation and its knowledge about the dynamic of the
system. Formally, we model the intruder’s observation as an
output function

H : S → Y,



where Y is the set of output symbols. The output function is
extended to H : S∗ ∪ Sω → Y ∗ ∪ Y ω naturally. Therefore,
after executing a finite path τ = s0s1 . . . sn ∈ S∗, the
intruder will observe a sequence of observations H(τ) =
H(s0)H(s1) . . . H(sn) ∈ Y ∗.

We assume that the labeled MDP M has some “secrets”,
which are modeled as a set of secret states Ssecret ⊆ S. The
security requirement is that the intruder can never determine
for sure that the system is/was at secret states for any specific
instant of time based on observations. Such a requirement is
called the infinite-step opacity [15], which says that for any
state sequence that leads to a secret state, no matter what
future information is generated, there always exists another
observational equivalent state sequence (from the intruder’s
point of view) that does not visit a secret state at the same
instant of time. Therefore, an infinite-step opaque system
will always hold the plausible deniability for visiting secret
states.

Definition 1: (Infinite-step Opacity) Given a labeled MDP
M with a set of secret states Ssecret ⊆ S and a control
policy Γ, the MDP under control MΓ is said to be infinite-
step opaque w.r.t. Ssecret if

(∀τ1τ2 ∈ Path(MΓ) : Last(τ1) ∈ Ssecret)
(∃τ ′1τ ′2 ∈ Path(M) : Last(τ ′1) 6∈ Ssecret)
[H(τ1) = H(τ ′1) ∧H(τ2) = H(τ ′2)].

(1)

Remark 1: The above definition implicitly assumes that
the intruder has the following capabilities:
• it knows the system model M;
• it can observe the external observation H(τ).

However, the intruder does not know the control policy Γ
because we consider the non-secret path τ ′1τ

′
2 in the open-

loop system M rather than the closed-loop system MΓ.
Furthermore, we assume that the intruder cannot observe the
input action a ∈ A at each instant of time. This assumption,
however, can actually be relaxed by augmenting the state-
space so that each input a is encoded in the output of its
successor state.

Infinite-step opacity can also be characterized in terms of
the delayed state estimate. Formally, for any sequence of
observations αβ ∈ H(Path(MΓ)) ⊆ Y ∗ of the intruder,
we denote by Ê(α | αβ) the delayed state estimate that
captures the set of all possible states the system could be in
at the instant when α is observed given the entire observation
αβ, i.e.,

Ê(α | αβ) :=

{
Last(τ1) ∈ S :

∃τ1τ2 ∈ Path(M) s.t.
H(τ1) = α ∧H(τ2) = β

}
.

For simplicity, we define Ê(α) = Ê(α|α) as the current state
estimate given the observation α. Then infinite-step opacity
in the labeled MDP under control defined in Definition 1 can
be reformulated as follows

∀αβ ∈ H(Path(MΓ)), Ê(α | αβ) * Ssecret. (2)

Given a labeled MDP M controlled by policy Γ and an
LTL formula ϕ over AP , we denote by Pr(MΓ � ϕ) the

probability of satisfying ϕ in the labeled MDP under control,
i.e.,

Pr(MΓ � ϕ) = Pr ({τ ∈ Path(MΓ) : L(τ) � ϕ}) .

The reader is referred to [1] for more details on how to define
the probability measure on infinite paths in MDPs under a
policy. Intuitively, the probability of infinite paths satisfying
LTL formula ϕ is calculated by generating a cylinder set that
consists of all infinite paths that start with a finite path.

Our overall control objective is to synthesize a control
policy Γ that maximizes the probability of satisfying a given
LTL specification, while satisfying the security constraint
described by infinite-step opacity as described next.

Problem 1: Given a labeled MDP M with a set of secret
states Ssecret ⊆ S and an LTL specification ϕ, synthesize a
control policy Γ : S∗ → A such that:

(i) the MDP controlled by policy, i.e.,MΓ, is infinite-step
opaque; and

(ii) for any other control policy Γ′ satisfying (i), the prob-
ability ofMΓ satisfying ϕ is no less than that ofMΓ′ ,
i.e., Pr(MΓ � ϕ) ≥ Pr(MΓ′ � ϕ).

IV. INFORMATION-STATE ESTIMATOR

In order to capture the security constraint in Problem 1,
one needs to think, from the intruder’s point of view, what
states the system may be at for some previous time instants.
To this end, in this section, we study how intruder’s infor-
mation about the system evolves when delayed information
is involved.

A. Information-state Estimator

First, we define some necessary operators. Let s ∈ S be
a state and y ∈ Y be an output, we denote by Post(s, y)
the set of all possible successor states of s when the intruder
observes y, i.e.,

Post(s, y) = {s′ : ∃a∈A s.t. P (s, a, s′)>0 ∧H(s′)=y}.

For a set of states η ∈ 2S , we define Post(η, y) =
∪s∈ηPost(s, y). Let θ ∈ 2S×S be a set of state pairs and
y ∈ Y be an observation, we define

Post(θ, y)={(s1, s
′
2) : ∃(s1, s2)∈θ s.t. s′2 ∈ Post(s2, y)},

as the new set of state pairs that tracks the current states and
where they come from. Also, for a set of states η∈ 2S , we
define

�(η) = {(s, s) ∈ S × S : s ∈ η},

that maps a set of states to a set of state pairs.
In order to enforce infinite-step opacity for the labeled

MDP, we need to track the state estimate based on the
external observation of the intruder. When a finite path τ =
s0s1 . . . sn ∈ Path(M) is executed, the intruder observes a
sequence of outputs α = H(τ) = H(s0)H(s1) . . . H(sn) =
y0y1 . . . yn. Note that the initial observation y0 does not
provide any information because we assume that the initial
state s0 is unique. Therefore, to capture infinite-step opacity,



we need to compute all possible delayed state estimates for
all time instants along the observation, i.e.,

Ê(y1 | α), Ê(y1y2 | α), . . . , Ê(y1y2 . . . yn | α).

This is done by the structure of information-state estimator,
which is a new transition system defined as follows.

Definition 2: The information-state estimator is a transi-
tion system T w.r.t. the labeled MDP M

T = (X,x0, Y, ζ),

where
• X ⊆ 2S×22S×S

is the set of states. For any state x ∈ X ,
it is in the form of x = (C(x), D(x)), where the first
component C(x) represents the current state estimate of
the system and the second component D(x) is a set of
state pairs sets that captures all possible delayed state
estimates in history.

• x0 = ({s0}, {{(s0, s0)}}) ∈ X is the initial state.
• Y is the set of inputs, which is the intruder’s observation

by the output function H .
• ζ : X×Y → X is a transition function, where ζ(x, y) =
x′ means that there is a transition labeled by input y
from state x to state x′, which is obtained as follows:

C(x′) =Post(C(x), y),

D(x′) ={Post(θ, y) ∈ 2S×S : θ ∈ D(x)}
∪ {�(C(x′))}.

(3)

The information-state estimator tracks information as fol-
lows. The initial state x0 is the initial information-state
estimate from the intruder’s point of view, which is s0

because we assume the initial-state is unique. When a
new observation y is observed, the intruder will update its
information by equation (3). Intuitively, the first equation
updates the current state estimate of the system, and the
second equation updates the delayed state estimate of the
system and adds the current state estimate to the history. For
each α = y0y1 . . . yn, we denote by ζ(α) = ζ(x0, y1 . . . yn)
the information state reached by α. Note that for α = y0, we
have ζ(α) = x0 because y0 does not provide any additional
information.

B. Properties of the Information-state Estimator

The following result shows that the proposed information
updating rule in equation (3) indeed yields the desired
delayed state estimate in the labeled MDP.

Proposition 1: Given a labeled MDP M and a control
policy, let τ ∈ Path(MΓ) be a finite path, α = H(τ) be an
observation of the intruder and ζ(α) be the information-state
reached. We have

(i) C(ζ(α)) = Ê(α); and
(ii) D(ζ(α)) = {θα′,α ∈ 2S×S : α′ ≤ α}, where

θα′,α=

{
(Last(τ1),Last(τ2)):

τ1, τ2∈Path(M), τ1≤τ2
H(τ1) = α′, H(τ2) = α

}
.

Proof: First, we prove (i) by induction. Suppose that
|α| = 1, i.e. α = y0, then we have C(ζ(α)) = Ê(α) = {s0}.

We assume that (i) holds for |α| = k, then we prove the case
of αyk. By induction hypothesis, we know

C(ζ(α))= Ê(α)={Last(τ) : τ ∈Path(M), H(τ)=α}.

We have

C(ζ(αyk)) = Post(Ê(α), yk)

= ∪s∈Ê(α) {s
′|∃a ∈ A s.t. P (s, a, s′) > 0, H(s′) = yk}

=

{
s′ :
∃a ∈ A s.t. P (s, a, s′) > 0, H(s′) = yk

s = Last(τ), H(τ) = α, τ ∈ Path(M)

}
={(τs′)−1 : τs′ ∈ Path(M), H(τs′) = αyk}
=Ê(αyk).

Therefore, (i) holds. Next, we prove (ii) by induction.
Induction Basis: Suppose that |α| = 1, i.e., α = y0. Then

we know that D(ζ(α)) = {{(s0, s0)}}. We have

D(ζ(α)) = {{(s0, s0)}}

=

{{
(Last(s0),Last(s0)):

α ≤ α,H(s0) = α,τ1 = τ2 = s0,

H(τ1) = H(τ2) = α

}}
={θα,α ∈ 2S×S},

which shows that the induction basis holds.
Induction Step: Suppose that (ii) holds when |α| = k,

then we prove that (ii) still holds in the case of αyk. By the
updating rule in equation (3), we have

D(ζ(αyk)) ={Post(θ, yk) ∈ 2S×S : θ ∈ D(ζ(α))}
∪ {�(C(ζ(αyk)))}.

Since (ii) holds when |α| = k, we have

{Post(θ, yk) ∈ 2S×S : θ ∈ D(ζ(α))}
={Post(θα′,α, yk) : α′ ≤ α}
={{(s1, s

′
2) : s′2 ∈ Post(s2, yk), (s1, s2) ∈ θα′,α} : α′ ≤ α}

=

{{
(Last(τ1),

Last(τ2s
′
2))

:
τ1, τ2s

′
1∈Path(M), τ1<τ2s

′
2

H(τ1)=α′, H(τ2s
′
2)=αyk

}
:α′ < αyk

}
={θα′,αyk : α′ < αyk}.

Besides, we have C(ζ(αyk)) = Ê(αyk) and

� (C(ζ(αyk)))

={(Last(τ),Last(τ)) : τ ∈ Path(M), H(τ) = αyk}
=θαyk,αyk .

Now, we get

D(ζ(αyk)) ={θα′,αyk : α′ < αyk} ∪ {θαyk,αyk}
={θα′,αyk : α′ ≤ αyk}.

Therefore, (ii) holds.
The above result suggests an approach for computing

all possible delayed state estimates along an observation.
Specifically, for any information-state x = (C(x), D(x)) ∈
2S × 22S×S

, we define the class of state sets

D1(x) := {{s ∈ S : (s, s′) ∈ θ} : θ ∈ D(x)}.



Then for any observation α = y0y1 . . . yn∈H(Path(MΓ)),
by Proposition 1, all possible delayed-state estimates of the
intruder can be computed by

D1(ζ(α)) = {Ê(y0 . . . yi | α) ∈ 2S : i = 0, 1, . . . , n}. (4)

V. SYNTHESIS PROCEDURE

In this section, we present an algorithm that solves Prob-
lem 1. Our approach is to compose the MDP with the DRA
and the information-state estimator in order to capture both
the LTL specification and the security requirement. Then
we solve the problem by applying safety game as well as
probabilistic model checking techniques over the product
state-space.

A. Product MDP

LetM be the labeled MDP, R be a DRA accepting Lϕ and
T be the information-state estimator. We construct a product
MDP in order to compute all infinite paths satisfying ϕ and
to find all finite paths that reveal the secret.

Definition 3: Given a labeled MDP M =
(S, s0, A, P,AP, L), a DRA R = (Q, 2AP , δ, q0, Acc)
accepting ϕ and the information-state estimator
T = (X,x0, Y, ζ), the product MDP is a tuple

M̃ = (S̃, s̃0, A, P̃ , Ãcc),

where
• S̃ ⊆ S ×Q×X is a finite set of states. A state s̃ ∈ S̃

is in the form of s̃ = (S(s̃), Q(s̃), X(s̃)).
• s̃0 = (s0, q, x0) is the initial state such that q =
δ(q0, L(s0)).

• A is a finite set of actions and A(s̃) denotes the set of
actions available at state s̃.

• P̃ : S̃ × A × S̃ → [0, 1] is the transition probability
defined by: P̃ ((s, q, x), a, (s′, q′, x′)) = P (s, a, s′) if
q′ = δ(q, L(s′)) and x′ = ζ(x,H(s′)); otherwise,
P̃ ((s, q, x), a, (s′, q′, x′)) = 0.

• Ãcc = {(B̃1, G̃1), (B̃2, G̃2), . . . , (B̃n, G̃n)} is a finite
set of Rabin pairs. For every (B̃i, G̃i) ∈ Ãcc, a state
(s, q, x) ∈ B̃i if q ∈ Bi and a state (s, q, x) ∈ G̃i if
q ∈ Gi.

For a state (si, qi+1, xi) ∈ S̃, the first component si is the
state that the system is currently at. The second component
is the state corresponding to the satisfication of the LTL
formula. The third component is the state estimate from
the intruder’s point of view. The product MDP restricts the
transition of the labeled MDP such that each transition not
only satisfy the LTL specification and, at the same time,
the information-state update is consistent with its current
observation. If a transition is feasible, then the transition
probability of the product MDP M̃ is determined by the
original labeled MDP M.

Without loss of generality, we consider a control policy
on the product MDP as a mapping Γ̃ : S̃ → A that
maps a state to a specific action. An action at state s̃
is denoted by Γ̃(s̃) and there exists a state s̃′ such that
P̃ (s̃, Γ̃(s̃), s̃′) > 0. We denote by τ+ = s̃0s̃1 . . . s̃n a path

on the product MDP under a policy Γ̃ such that for all i ≥ 0,
P̃ (s̃i, Γ̃(s̃i), s̃i+1) > 0. There is a one-to-one correspondence
between the path τ = s0s1 . . . in the MDP M and the path
τ+ = (s0, q1, x0)(s1, q2, x1) . . . in the product MDP M̃.
Given a path τ+ on the product MDP, the correspondence
path τ on the labeled MDP M satisfies ϕ if and only if τ+

is accepting.
Note that the set of actions for M̃ is the same as the one

for M. Due to the one-to-one correspondence relationship,
given a control policy Γ̃ : S̃ → A on the product MDP
M̃, one can obtain a control policy Γ : S∗ → A on the
labeled MDP M by keeping track of sequences of states on
the product MDP. Therefore, we can induce a policy Γ for
M from a policy Γ̃ for M̃ as follows.

Definition 4: (Induced Policy) Given a product
MDP and a policy Γ̃ : S̃ → A, τ+ =
(s0, q1, x0)(s1, q2, x1) . . . (sn, qn+1, xn) is a finite path
on the product MDP M̃ that ends in s̃n = (sn, qn+1, xn),
then the control policy Γ on the labeled MDP maps a
sequence of states s0s1 . . . sn to an action Γ̃(s̃n), i.e.,
Γ(s0s1 . . . sn) = Γ̃(s̃n).

Note that although policy Γ̃ is state-based in M̃, its
induced policy Γ may not be state-based in M. This is
because the state-space of M̃ further contains of the state-
spaces of the DRA and the information-state estimator into
the state-space of M.

B. Enforcement of Infinite-step Opacity
To enforce the security constraint, we need to make sure

that the labeled MDP under control does not reveal secrets at
the current and in the future time. By equations (2) and (4),
it suffices to avoid those states in the product MDP at which
the secret was revealed for some previous time instants.
Formally, we define

Srev = {s̃ ∈ S̃ : ∃η ∈ D1(X(s̃)) s.t. η ⊆ Ssecret}

as the set of secret-revealing states. We need to guarantee
that all reachable states in the MDP under control are not
secret-revealing. Given an MDP M, we define M|S′ as the
restriction ofM to state-space S′ ⊆ S, which is obtained by
removing states not in S′ and changing the related transition
probability to 0.

We remove those secret-revealing states and the corre-
sponding transitions from the product MDP M̃ and get a
new product MDP

M̃0 = M̃|S̃\Srev
.

Furthermore, for any state in the product MDP, we need to
make sure that

(i) there is at least one action defined at each state; and
(ii) the overall probability of transitions labeled with an

action is one, i.e.,
∑
s̃′∈S̃ P̃ (s̃, a, s̃′) = 1.

We call those states satisfying the above two conditions as
consistent states Sconsist. Therefore, we need to iteratively
removing those inconsistent states from the product MDP.
We define an operater

F : M̃ → M̃,



as follows: for any M̃, we have F (M̃) = M̃ |Sconsist
. Re-

moving some inconsistent states may create new inconsistent
states. We define

M̃∗ = lim
k→∞

F k(M̃0),

as the resulting product MDP, which is the fixed-point of
operator F . Essentially, M̃∗ is the winning region if one
wants to avoid reaching states Srev .

C. Optimal Control Policy

Once we obtain MDP M̃∗ that does not reveal any secret,
we need to find the optimal control policy to obtain a
solution to satisfy the second condition of Problem 1. Our
approach for this part is similar to the standard probabilistic
synthesis for maximizing the satisfication of an LTL formula
[1]. To this end, we introduce the definition of sub-MDP,
maximal end component (MEC) and accepting maximal end
component (AMEC) in the following.

Definition 5: (sub-MDP) A sub-MDP of a MDP is a pair
of states and action sets (M,N) where i) ∅ 6= M ⊆ S is
a set of states and N : M → 2A is a mapping such that
N(s) ⊆ A(s) for all s ∈M and ii) for all s ∈M , we have
{s′|P (s, a, s′) > 0} ⊆M .

Definition 6: (MEC) An end component is a sub-MDP
(M,N) such that the underlying digraph G(M,N) is strongly-
connected. An end component (M,N) is maximal if there
exists no other (M ′, N ′) 6= (M,N) and M ⊆M ′ such that
N(s) ⊆ N ′(s) for all s ∈M .

Definition 7: (AMEC) Given a product MDP M̃, an ac-
cepting maximal end component (AMEC) of the product
MDP is a maximal end component (M,N) such that there
exists some (B̃i, G̃i) ∈ Ãcc such that B̃i∩M = ∅ and G̃i ⊆
M . Given the set of AMECs {(M1, N1), . . . , (MK , NK)},
the set of accepting states E can be computed as E =
∪Ki=1Mi.

Intuitively, an AMEC on product MDP is a set of states,
in which once a state (B̃i, G̃i) in AMEC is reached, the
system remains in G̃i forever and the LTL specification is
always satisfied. An AMEC fulfills the acceptance condition
Ãcc which is determined by the DRA R. Therefore, once
an AMEC is reached in the product MDP, the acceptance
criterion for the DRA holds. The control policy Γ̃ on the
product MDP that maximizes the probability of satisfying
ϕ is the policy that maximizes the probability of reaching
the set of accepting states E . Besides, there is a one-to-one
correspondence relationship between Γ̃ and Γ. We have the
following Proposition.

Proposition 2: For any control policy Γ, the maximal
probability satisfying the LTL formula is equal to the maxi-
mal probability of reaching E :

max
Γ

Pr(MΓ � ϕ) = max
Γ

Pr(reach E). (5)
The procedure to obtain all AMECs of an MDP can

be found in [1]. The second condition of Problem 1 can
be converted to find a control policy that maximizes the
probability of reaching accepting states E in the product
MDP.

Such maximum probability of reaching accepting states E
can be computed by value iteration. We denote the set of
states that cannot reach E under any policy as EN . For any
state s̃ ∈ E , the value remains 1. For any state s̃ ∈ EN , the
value remains 0. For the remaining state s̃k ∈ S \ (E ∪ EN ),
the value is computed by the iteration procedure as follows

vi+1(k)= max

∑
s̃t∈S̃

P̃ (s̃k, a, s̃t)v
i(t)|a ∈ A(s̃k)

 , (6)

where vector v = (v(1), v(2), . . . , v(|S̃|)) is the probability
of reaching E from each state. The initial value function is

v0(k) =

{
1 if s̃k ∈ E ,
0 if s̃k 6∈ E .

(7)

The value iteration will converge to the value function
denoted by v∗. Obviously, v∗(0) is the maximum probability
of reaching E in the product MDP M̃ under a policy Γ̃. Once
v∗ is obtained, we can compute a control policy Γ̃ : S̃ → A
for each state s̃ ∈ S̃ \ (E ∪ EN ) by

v∗(k) =
∑
s̃t∈S̃

P̃ (s̃k, a, s̃t)v
∗(t). (8)

If value v∗(k) satisfies equation (8), then a is the chosen
action at state s̃k. For states in E or EN , the actions are
chosen arbitrarily since it is irrelevant with the probability
of reaching E . We can get a state-based optimal control
policy Γ̃ that maximizes the probability of reaching the set
of accepting states E on the safety product MDP M̃∗ by
following the above procedures. Given an optimal control
policy Γ̃ on the product MDP M̃ , by Proposition 2, the
control policy Γ on the labeled MDPM that solves Problem
1 can be obtained by Definition 4.

Algorithm 1: Compute the optimal control strategy
Γ given M, ϕ and H

input : Labeled MDP M with Ssecret, output
function H , LTL formula ϕ

output: Optimal control strategy Γ
1 Translate the LTL formula ϕ to a DRA R;
2 Construct the information-state estimator T ;
3 Generate the product MDP M̃ =M×R× T ;
4 Delete all secret-revealing states in Srev from M̃

and get a new product MDP M̃0 = M̃|S\Srev
;

5 Remove all inconsistent states iteratively from M̃0

and get a product MDP M̃∗ = limk→∞ F k(M̃0);
6 Find all AMECs (M,N) for product MDP M̃∗

and compute the set of accepting states E ;
7 Compute the maximum probability of reaching

states set E from s̃0 and generate the optimal
control policy Γ̃ for M̃ by value iteration;

8 Induce the control policy Γ for M from Γ̃;

Our overall approach is summarized in Algorithm 1. Lines
1-3 construct a DRA R, the information-state estimator
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Fig. 1: (a) Work space of the robot. (b) Labeled MDP M
representing the mobility of the robot.

T and the product MDP M̃. Lines 4-5 aim to delete all
secret-revealing states and inconsistent states and to get a
safety product MDP. Then we find all AMECs of the safety
product MDP and compute the optimal control policy by
value iteration (Lines 6-7). Finally, we can induce control
policy Γ from Γ̃.

VI. CASE STUDY: SECURITY-AWARE MOTION PLANNING

Let us consider a robot moving in a workspace, which
is partitioned into eight regions as shown in Fig.1(a). We
assume that the robot can only move to the adjacent region
without crossing a wall and the arrows represent allowable
transitions between regions. The robot can take control
actions such as move southwards, move eastwards and move
westwards and stay, which are represented by actions a, b, c
and d, respectively. Due to uncertainty, the robot may move
to different regions from its current region when a control
action is taken, e.g., the robot can move to region 5 and
region 6 from region 2 when it moves southwards. The
probability of the transition from a region to another region
is related to the length of the overlap region. Therefore, the
mobility as well as the transition probability of the robot can
be represented by MDP M shown in Fig. 1(b).

The goal of the robot is to first go to region 1 to send a
message to a station and then visit in region 4 or region
6 infinitely often for surveillance. Therefore, we choose
atomic propositions as AP = {P1, P2} and define a labeling
function L : S → 2AP by L(1) = {P1}, L(4) = L(6) =
{P2} and L(s) = ∅ for other states. Then task of the robot
can be expressed by the LTL formula

ϕ = (¬P2UP1) ∧ (�♦P2).

Now, suppose that there is an outside intruder that can
detect whether the robot is moving from one region to
another. In addition, it has a sensor to detect whether or not
the robot is in region 3. Therefore, we can simply consider
a binary output Y = {D,¬D} and the output function is
given by H(3) = D and H(s) = ¬D for other states.

On the other hand, we assume that the robot does not want
the intruder to know exactly when it visits region 1 to send
the information. Otherwise, the intruder may use the time-
log to check what information the robot sends to the station.
Such a security requirement can be captured by infinite-step
opacity by considering secret-state Ssecret = {1}.
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Fig. 2: A DRA R translated from ϕ = (¬P2UP1)∧(�♦P2).
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Fig. 3: The information-state estimator T .

In order to solve the security-aware LTL synthesis prob-
lem, first we translate the LTL specification ϕ to a DRA R
shown in Fig.2. The acceptance set of Rabin pairs is Acc =
{(q1, q4), (q1, q5)}. Now we construct the information-state
estimator shown in Fig.3. We generate the product MDP
M̃ = M × R × T shown in Fig.4(a). Since D1(x5) =
{{0}, {1}, {3}}, D1(x6) = {{0}, {1}, {3}, {4}}, and {1} ⊆
Ssecret, x6 and x7 are secret-revealing states. Therefore,
we have Srev = {s̃19, s̃20, s̃21}. Product MDP M̃0 is
obtained by restricting M̃ to S̃\Srev . After we delete secret-
revealing states in the product MDP, there does not exist
an inconsistent state. The resulting product MDP M∗ after
deleting all secret-revealing states is secure in the sense that
all states in M̃∗ will not reveal the secrets.

Next, we find an optimal control policy that maximizes
the probability of satisfying ϕ in M̃∗. An infinite run
τ+ of product MDP M̃∗ is accepted if and only if τ+

intersects with s̃7 infinitely often and with s̃13, s̃16 and
s̃17 finitely often. The AMECs of M̃∗ is {(M,N)}, where
M = {s̃4, s̃6, s̃7}. The maximal probability of satisfying ϕ
is equal to the maximal probability of reaching M . Then,
we iteratively update the value of each state. The value
iteration procedure is shown in Table I. Since the values
for states s̃11, . . . , s̃18 remain 0, we omit these values in
Table I. The optimal control policy in the product MDP can
be computed using equation (8), e.g., since v∗(0) = v∗(1)
and v∗(1) = v∗(2), the policy at states s̃0 and s̃1 are a and
b, respectively. The function of the optimal control policy Γ̃
on the product MDP is shown in Fig.4(b). We can induce
the control policy on the labeled MDP M through Γ̃ by
Definition 4.
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Fig. 4: (a) The product MDP M̃ generated from M, R and T . (b) Solution Γ̃ on the product MDP.

vi(k) 0 1 2 3 4 . . .
0 0 0 0 0.7 0.85 . . .
1 0 0 0.7 0.85 0.85 . . .
2 0 0.7 0.85 0.85 0.85 . . .
3 0 0.5 0.5 0.5 0.5 . . .
4 1 1 1 1 1 . . .
5 0 0.5 0.5 0.5 0.5 . . .
6 1 1 1 1 1 . . .
7 1 1 1 1 1 . . .
8 0 0 0 0 0 . . .
9 0 0 0 0 0 . . .

TABLE I: Value iterations.

VII. CONCLUSION

In this paper, we formulated and solved a security-aware
LTL synthesis problem for MDPs. The security constraint is
captured by the notion of infinite-step opacity. A new type
of information-state estimator was proposed to effectively
handle the security constraint. By taking the product of
the MDP, the DRA and the information-state estimator,
the synthesis problem can be effectively solved by first
solving a safety game w.r.t. the information-state estimator
and then maximizing the probability of reaching accepting
regions. Note that, in this paper, we consider security as the
constraint, while the LTL specification is the optimization
objective. In the future, we plan to further investigate the
quantitative tradeoff between the probability of being secure
and the probability of satisfying the LTL specification.

REFERENCES

[1] C. Baier and J.-P. Katoen. Principles of model checking. MIT press,
2008.

[2] B. Bérard, K. Chatterjee, and N. Sznajder. Probabilistic opacity
for Markov decision processes. Information Processing Letters,
115(1):52–59, 2015.

[3] A. Bozkurt, Y. Wang, M. Zavlanos, and M. Pajic. Control synthesis
from linear temporal logic specifications using model-free reinforce-
ment learning. In IEEE International Conference on Robotics and
Automation, pages 10349–10355, 2020.

[4] X. Ding, S. Smith, C. Belta, and D. Rus. Optimal control of Markov
decision processes with linear temporal logic constraints. IEEE Trans.
Automatic Control, 59(5):1244–1257, 2014.

[5] J. Dubreil, P. Darondeau, and H. Marchand. Supervisory control for
opacity. IEEE Trans. Automatic Control, 55(5):1089–1100, 2010.
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